Learning and Discovery of Clinically Useful Information from Images
نویسنده
چکیده
Three-dimensional (3D) and four-dimensional (4D) imaging plays an increasingly important role in computer-assisted diagnosis, intervention and therapy. However, in many cases the interpretation of these images is heavily dependent on the subjective assessment of the imaging data by clinicians. Over the last decades image registration has transformed the clinical workflow in many areas of medical imaging. At the same time, advances in machine learning have transformed many of the classical problems in computer vision into machine learning problems. This talk will focus on the convergence of image registration and machine learning techniques for the discovery and quantification of clinically useful information from medical images. In the first part of part of this talk I will give an overview of recent advances in image registration. The second part will focus on the how the combination of machine learning and image registration can be used to address a wide range of challenges in medical image analysis such as segmentation and shape analysis. To illustrate this I will show several examples such as the segmentation of neuro-anatomical structures, the discovery of biomarkers for neurodegenerative diseases such as Alzheimer's and the quantification of temporal changes such as growth in the developing brain.
منابع مشابه
ارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متنکاوی در حوزه یادگیری الکترونیکی
As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011